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ABSTRACT

WL-consider,-nonlinear programming problems with stochastic constraints.
The Lagrangian corresponding to such problems has a stochastic part, which
in this work is replaced by its certainty equivalent (in the sense of expected
utility theory). It is shown that the deterministic surrogate problem thus
obtained, contains a penalty function which penalized violation of the con-
straints in the mean. The dual problem is studied (for problems with sto-
chastic righthand sides in the constraints) and a comprehensive duality theory
is developed by introducing a new certainty equivalent concept, which possesses,
for arbitrary utility functions, some of the properties that the classical cer-
tainty equivalent retains only for the exponential utility.
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1. INTRODUCTION

Consider the non-linear programming problem

, .. (P) inf go(x)

s.t gi(x,b)<0 i E I = (1,...,m}

where x EIR n is the decision vector; b EIRk is a given fixed
" ,, In Rn Rk

7:j, vector of parameters, g0 : R +IR and g : Rx R are givenMi real-valued functions. We will sometimes use also the vector nota-

tion g(x,b) = (gl(x,b),...,g (x.b)) Let the feasible set be

denoted by:

S ={x: gi(x,b) 0 Vi E I)

A fundamental approach to solve (P) is to replace it by an

unconstrained problem of the form:

inf{g (x) "+ P(x)}
0

where P(x) is a penalty function prescribing a "high cost" for

violation of the constraints (see e.g., Fiacco and McCormick [1968],

Luenberger [1973]).

An ideal penalty function for problem (P) is:

I if xE S

P(x) =

. += otherwise

In fact such a penalty is implicitly embedded in the Lagrangian

associated with problem (P):

UT
L(xY)= go(x) y g(x,b)

UX*
".- ''* . . . .9.
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Indeed, (P) can be reformulated as a saddle-function problem:

inf sup Lb(xy) (1)
xE]Rn y>,O

which is clearly equivalent to the unconstrained optimization problem:

inf{g ox) + P(x)} (2)
x

where

P(x) = sup y Tg(x,b) (3)
y>O

Since the supremum is equal to zero if x E S, and to infinity if

x g S, P(x), as defined in (3), is an ideal penalty for problem (P).

Assume now, and henceforth in this paper, that the parameter b

is a random vector, with known distribution function Fb, and

support B a R Problem (P) will be now referred to as Stochastic

Program (SP). The penalty function, just defined in (3), is now

the solution of a (linear) programming problem with a stochastic

objective function. For such problems the classical economic theory

approach of decision under uncertainty, is to replace the stochastic

Tobjective function by its expected utility Eu(y g(x,b)), where u

is a Von-Neumann-Morgenstern utility function, and E denotes the

expectation operator with respect to b. Adopting this approach here,

we replace the stochastic objective function y g(x,b) by its

-l Tcertainty equivalent u 1Eu y g(x,b)); thus replacing the penalty

function (3) by:

P(X) = sup u Eu(y T(x,b)) (4)
y>.O

where u is the inverse of u.

. . .- °- . - ,• "-" . "-. " "" o ." . ° " ° ." ° .. °"- "-- "-".' . . . ".'"'.°'
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The use of u Eu(") in (4), rather than Eu('), is appropriate

since in (2) we must add terms with comparable units (not $ + utiles).

Using the u-penalty (4) in problem (2), the stochastic program (SP)

is thus replaced by what we will call the Certainty Equivalent Primal

problem:

(CE-P) infig (X) + Pu(x))

V'~i In the first part of this paper we study problem (CE-P) and

show its relevance as a penalty approach to treat programming problems

with nonlinear stochastic constraints. A related approach for the

case of Stochastic Linear programs is given in Ben-Tal and Teboulle

(1984]. The study of (CE-P) relies on the properties of the u-penalty

Pu(x), and these will be derived in §4 using preliminary results

from the two preceding sections: Section 2, which summarizes some

basic facts from utility theory, and Section 3, in which we prove a

convexity result on the certainty equivalent functional:

v(y) = u -Eu(yT Z)

The latter result is needed to demonstrate that Pu, given in (4), is

the optimal value of a concave program.

In the deterministic case, the representation of (P) as the saddle

function problem (1), is also the source of obtaining a dual problem

associated with (P), namely:
S

(D) sup infL (xy)
y>,O x

In the stochastic case, it is then natural to study the nature of

the dual problem corresponding to (CE-P). This will be carried out

.-r ' ''-''" ' '- "'._.' ". .. . ."" " """ ' '' ' ' - " -% "' "• ' "" " '. ." " "m' ' " ' ' ' ' ' ''l. . 'J ' b , - m 'd ~ ' j - " ," " :" %
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in the second part of the paper ( § 5-8) for the important special

case of problems with stochastic righthand side:

(SP-RHS) inf(gj(x): g(x) > b}

This question was addressed recently, for exponential utilities, in

Ben-Tal (1984]. It was shown there that the dual problem of (CE-P)

consists of maximizing the certainty equivalent of the Lagrangian

dual function:

hb(Y) = infLb(xy) Ix

i.e., the dual problem is

(CE-D) max u 1Eu(hb(y))

This result is recovered here in Section 5. However, for arbitrary

utilities, such a duality result does not hold; this is due mainly

to the non-additivity of the certainty equivalent for non-exponential

utilities. Therefore, we suggest, in Section 6 of this paper, a new

type of a certainty equivalent functional, which possesses, for

arbitrary utilities, many of the properties that the classical certainty

equivalent possesses only for exponential utilities . The appropriate-

ness of the new certainty equivalent in defining a corresponding

u-penalty function, and its use in treating stochastic programs is

discussed in Section 7. A complete duality theory for (CE-P) is

then obtained in SeCtion 8.
.0

For the special role of exponential utility in economic analysis
9 see e.g., Samberg and Spremann [1981].

.........................................- ' .
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2. SOME PRELIMINARIES ON UTILITY FUNCTIONS

In their classical work, von-Neumann and Morgenstern [1947] have

developed a set of axioms concerning preferences over probability

distributions. Under these axioms, a random variable X is preferred

against the random variable Y if and only if there exists a real

valued function u, called a utility function, unique up to a monotone

increasing affine transformation, such that Eu(X) > Eu(Y), where

E denotes the mathematical expectation. A decision maker is called

risk a\verter if E(X) is preferred against X for all random variables

X, i.e.,

u[E-CX)] Eu[X]

The latter is the Jensen inequality for u(.), and therefore equivalent

to the concavity of the utility function u. Throughout this paper

we shall deal with the class U of strictly increasing concave utilities.

Further, denote by Uk  the class of strictly increasing, strictly

concave; k-times continuously differentiable functions, more precisely:

U u E C: u' > 0 and u strictly concave}
U= (uEC(k: ul > 0 and u" < 0} k > 2

Following Pratt [1964] and Arrow [1971], the measure of local risk

aversion at the point t E IR for u E U2, is defined by:

iu"(t),
'.r~t) = ut (5)

Three basic properties of r(t) for u E U2  are summari:ed below:

a) r(t) is well-defined and r(t) > 0 Vt EIR

b) r(t) is invariant with respect to any positive affine trans-

formation of the utility function u(t)

....
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c) Given r(t), the utility function u(t) is uniquely determined

(up to a positive affine transformation) by:
t s

u(t) fexp(-fr(a)da)ds
f

For a given u E U, the inverse function u -  exists and is

a strictly increasing convex function. The Certainty Equivalent

of a random variable X is defined by

C(X) = uI Eu(X)

It is the sure amount for which the decision maker remains indifferent

to a gamble yielding X, i.e.,

u(C(X)) = Eu(X)

The following properties of the certainty equivalent are immediate

5 consequences of its definition.

Proposition I Let X be a random variable and u E U then:

(a) C(w) w Vw E .

(b) C(X) is invariant to affine transformation in u.

(c) C(X) < E[X] with equality for all X if and only if u is linear.

Looking back to the definition of the u-penalty function:

P u (X) = supC(y Tg(x,b)) = u Eu[y g(x,b)]} (4)
y>,O

we see from Proposition I that it possesses two desirable features:

(a) In the case where b is a deterministic vector of parameters,

the original problem (P) is recovered from (CE-P)

(b) The penalty function is invariant to affine transformations of u.

.- , .,; .. ... .,. ... ..--. , ...- '2 ,- - - . , - " -- . -- ,- - "- ,-- -
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There is, however, some difficulty associated with the objective

function in (4):

Q(x;y) c[yTg(xb) = ulEu (y Tg(x,b))

in term of which Pu is computed. As a function of y, Q(x;y) is

a convex increasing transformation (u 1) of the concave function

E u(yTg(x,b), thus in general it is not guaranteed that Q(x;.) is

concave.

In the next section we characterized the utilities for which

y -) Q(x;y) is a concave function, for any random vector b. The

characterization is given in term of the Arrow-Pratt risk aversion

measure r.

3. CONCAVITY OF THE CERTAINTY EQUIVALENCE FUNCTIONAL

Let Z be a random vector in R m , and for u E U define the

certainty equivalence functional by

v(y) = u- IEu (yTZ)

T mWe further assume that E u (y Z) < += Vy E R.

-l
Let 0 = u , we next define a function of two variables h, which plays a

central role in the proof of the main result of this section:

h(xl,X 2):=

0'(x 2 )

Note that since ,' > 0, h(xl,x2) is well defined for all xl.x, in

the range of u and is a twice continuously differentiable function

for u E U . The convexity of h(x ,x ) will be now characterized

.. ... . .. ...
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by showing that its Hessian matrix 72h is positive semi-definite,

i.e.,

Vd ER 2  dT7 2hd > O.

Lemma 1 - Let u E U3, then the function h(x1 ,x2) is convex if
1

and only if r(t is concave.

Proof: The Hessian matrix of h will be positive semi-definite if

and only if:

D(x,y):= x 2h11 + y2h2 2 + 2xyh1 2 > 0 for any x,y not both zero

32h

where hij - x i,j = 1,2

Computing the partial derivatives of h(x1 ,x2) we obtain:

h it(X 1) h, (X 1) " (x2 )
hl = ( 2  ; h12 - - 2

,2(x 2 )

1 0(x 2 ) 1 2 p"2( -

x2 ) 2 +(x 2 )' (x2)
22 ='(x 2 ) }2) ,(x2)2

Now h > 0 since u E U hence D(x,y) can be rewritten as

D(x'y) = hl 12 +lY (h U__ 211 2')
/ hlly/2

and is non-negative for all (x,y) if and only if

2

l := h2  0 (6)Ah : 22 h

In terms of 0(t), the risk aversion function defined in (5) is:

r(t) = [ - (t) "
[= (t)I
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By the inverse function theorem we have:

1 _._,(t

u' [((t)] I U1 tA
01((t) t

U"' b(t) I 3_€"2 (t) - 011f (t)W'(t),

and hence:

=t "(t) [' (t)"' i(t) - 2 "2(t)
012(t) 0'4 (t)

Now, put tl I O(xl) and t2 4 *(x2); computing Ah, and using the

fact that 0' > 0, we obtain after some algebraic manipulations that

(6) is equivalent to:

r 2(t 2 ) < r(t1)r(t2) - (t 1 -t 2 )r(tI)r'(t 2 ) . (7)

Dividing (7) by r(tl)r2(t2) , which is strictly positive, we have

1 1Ir' (t 2 )

r(t ) r(t 2 ) t r 2 (t 2 )

and this is exactly the gradient inequality for l/r(t), which

characterizes its concavity.

Theorem 1: Let u E U3 , then the function:

v(y) u- IEu (yT Z)

is concave for any random vector Z, if and only if is concave.
r (t)

Proof:
v(y) is concave if and only if it satisfies the gradient inequality,

- ati.e.,using again the notation ¢ -- u ,and observing that 4,' > 0:
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Clearly then i'(p) < 0, i.e., is decreasing; moreover u' > 0

and a(p) is strictly increasing (the composition of two strictly

decreasing functions) and therefore a'(p) > 0, and thus by (21)

'P > 0 showing that ' is strictly convex.

Finally, since u'(0) = 1, a(l) = 0 and thus:

P(l) = u(0) = 0.

Let Z be a random vector in IRm and for u E UN we define

now the New Certainty Equivalent (NCE) functional by w: IRm - R

w(y) = sup {n + Eu(yTZ-n)} (22)

The next result shows that w(y) is a concave function for any

utility function u E UN(compare with Theorem 1, § 3).

m
Proposition 5 - The function w: Rm+ JR defined in (22) is concave

for any u E U and for any random vector Z.N

Proof: The function w can be rewritten as:

w(y) - inf F(n,y)

where F: R x Rm ' R is defined by : F(ri,y) n- Eu(y tZ-n)

since u is concave, it is easily shown that F(n,y) is (jointly)

convex, hence w(y) is concave (see Rockafeller [19741, Theorem 1).

We shall derive now an explicit form for w(y).

Proposition 6 - For any u E UN'

w(y) : n(y) + Eu (yT (23)



-22-

we get:

M-Eu (X-ri) > (M -u(L-n'j)Pr{ikt-u(X-n) > M -u(L-ri)j (20)

Since u is strictly increasing.

Pr{ -u(X-n) > M -u(L-nO} = P(X < LI = p , and (20) becomes

nl + Eu (X-ri) < n + p u (L-n) + M(l -p)

thus

S(X) < M(l-p) + sup (n +Pu (L-n)}
n EIR'

Differentiating the supremand with respect to .1 and equating to zero:

u'(L - n) _ I
p

This equation indeed has a solution n for all 0 < p < 1; to verify this

note that {u'(0) - 1, u' is decreasing, and assumption A2} imply

Range u' D [1,+-~):) {-L}, V 0 < p < 1
p

in fact, the optimal n~ is

n=L - (u')- 1(-),
p

where (u')- denotes the inverse of u'. Inequality (19) thus follows.

Now P(p) can be written as:

()= M- p(M- u(a(p))) - ct(p)

with a(p) = (ul)- ( I) , and the expression for its derivative is
p

'()= -(M-u(a(p))) + V'(p)(pul (a(p)) -1

Note that in the latter the second term is zero since ul(a(p))= -,so

P

(p) (p)u' (C (p))(1
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The next result gives an upper bound for S(X), which will be useful in

proving later theorems 6,7, and 8. These results need additional assumptions

on the utility function u:(a,b)- ]R (- <a < b <

Al. u is bounded above:

3 M: u(t) < M V t E (a,b)

A2.(*) lim u'(t) = +-0

t-*a

Note that A2 holds if u is essentially smooth in (a,b) (see e.g.

Rockafeller [1970] pg. 251); in particular it holds for all the classical

utilities (log, power and exponential utilities). We denote the class of

A
utilities u E UN satisfying Al and 

A2 by UN.

A
Lemma 2: Let u E U and let L> . Denote

N min

p = Pr(X < L)

then

S(X) < (p) + L (19)

where

'P) = M(I-p) + pu((u) (-) (u ED
P p

Moreover 4 is a strictly convex decreasing function in (0,1], with

'PI) = 0

Proof: Let y(t) = M-u(t-n) and k = M-u(L-n). Then, since

u E y(-) ; 0 and k > 0. Applying the general Tchebychef

Inequality (see e.g., Mood et al. [1974]):

E~y(X)) > k Pr~y(X) > k)

(*) We acknowledge here the contribution of the anonymous referee in

pointing out the necessity of this assumption.

... .. ... .. . .. ....•. -*. \.V - . ,, . .,..-., - .. .. " '' , ' " . . .... " . .. . . - ., ,- ., .. .' . ,
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Proof: (a) By definition, S(w) = sup {n + u(w-r)}, equating
nER

the derivative of the supremand to zero we obtain u'(w-n) = 1,

hence since u'(O) = 1 and u' is strictly decreasing the supremum

is attained at n = w and its value is then S(w) - w.

(b) By (17) we have:

aS(X) =sup {n + Eu(X-n)1 < sup {n + E(X-n)l = E(X)

nER nER

(c) For any n E R we have X-n Xmin -n, then the result follows

from (a).

(d) By definition

S(X+w) = sup {n + Eu(X+w-n)
nhER

hence with n = n-w, one obtains:

S(X+w) = sup {;+w+Eu(X-n)} = w s(X).

(e) Let u(t) = 1-e-t be a normalized utility function,. then

S(X) = sup (n+l-Ee'Xn)}, which by simple calculus
nER

gives S(X) =-logEe " . On the other hand, since u E UNP

u exists and a little algebra shows that C(X) u'lu(X) =

= -logEe ; hence for exponential utility C(X) - S(X).

Example: Let X be a random variable with X a 1. Then for the
max
2

(normalized) quadratic utility u(t) - t - t /t , (t 1 1) a direct com-

putation of (18) yields:
12S(X) = u - 0

where U is the mean of X, and a2 its variance. For this case

the classical certainty equivalent is

C(X) = 1 - /(u-l) 2 + 02

rC
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Therefore, the new certainty equivalent can be viewed as an integra-

tion of the expected utility principle and the two stage approach

For the latter, see Dantzig [1955], Dantzig and Madansky (1961],

Walkup and Wets (1967], Mangasarian and Rosen [1964] and the recent

surveys of Dempster [1980], Kall [1982] and Wets [1983].

In the sequel we frequently interchange integration and differ-
d d-- Eu(t+X) = E d- u(t+X). For this to hold itentiation, e.g.: dt E~ +)

suffices to assume that u'(.) is continuous and Eu'(.) < . See

Bourbaki [1958], pg. 99.

Let the support of the random variable X be ,minXmax].

The supremum in (18) is attained at the point n satisfying

Eu(X-n*) = 1, and since u' is decreasing then: 1 > u'(Xa-n

and 1 < u'(xmin- n*), hence together with u'(O) = 1 this shows

that n C[x minXmax]. Ii. particular, for random variables with

compact support, the supremum in (18) is attained. The appropriateness

of S(X) as a certainty equivalent measure is further supported by

its basic properties which are collected below.

Theorem 4 - For any utility function u C UN, a random variable

X and a constant w:

(a) [Constancy] S(w) = w.

(b) [Risk aversion] S(X) < E(X) ,V nondegenerate random variables X.

(c) [Lower bound] If X is bounded below by xmin  then

S(X) >X.

(d) [Additivity] S(X+w) = S(X) + w

(e) [Exponential-case] For the (Normalized) exponential utility

function, the new certainty equivalent coincides with the

classical, i.e.,

S(X) = C(X).

. . . . . . . . . . .. . " .-.-.-. .- -.- ., -. .- --, '. ."...-."-"- - " " "''
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Throughout the rest of this paper we will consider the class

U of normalized utilities:
N

u EU - (u Li2: u(O) = 0, u'(0) = l}

Note that for every u E U N:

u(x) > 0 for x > 0 since u is increasing (16)

m u(x) < x for all x # 0 since u is strictly (17)
concave,

thus a normalized utility can be interpreted as a discount function,

and hence, the "present value" of a future (uncertain) income Y is

Eu(Y).

Suppose that the decision maker, expecting a future (uncertain)

income of X dollars, can consume part of X at present. If he

chooses to consume n dollars, the resulting present value of X

is then n + E u (X-n). Thus the sure (present) value of X, denoted

S(X) is the result of an optimal allocation of X between present

and future consumption, i.e.,

s(X) sup (r + Eu (X-n)} (18)

n EIR

which is our new certainty equivalent. In fact, S(X) can be

written alternatively as:

S(X) = sup (n + E sup (u(y): n+y4 X}}
nER y

and thus it is the value resulting from applying a two-stage approach

("here and now") to the stochastic program:

sup (n: n X}

z
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Ben-Tal [1984]. In particular, for the important special case of

stochastic rhs programs, we recover here the result showing that

the dual problem of (CE-P) is equivalent to Expected utility maximiza-

tion of the classical Lagrangian dual function of (SP). In the

rest of the paper we aim at generalizing this duality relation for

arbitrary utilities. For this purpose we introduce in the next

section, a new type of certainty equivalence.

6. THE NEW CERTAINTY EQUIVALENT

In this section we introduce a new-certainty equivalent in terms

of which a new u-penalty H (x) is constructed, maintaining similar

properties to Pu (x), as well as producing duality results for (RHS)

programs for general utilities. The penalty properties of P x)

rely essentially on the.following basic properties of C(.): (see

Proposition 1, Section 2)

(a) C(w) = w Vconstant w

(b) C(X) < E(X) for any random variable X and u E U.

On the other hand general duality results for the (RHS) case rely heavily

on the additivity property of C(-), (Proposition 4)

(c) C(X+w) = C(X) +w V fixed w

which is valid, for arbitrary random variable X, only for exponential

utilities.

The three properties (a)-(c) will serve as guidelines to define

our new certainty equivalent.
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deterministic primal (CE-P) is:
m k

inf {go(x) + p I pkcx)}
x k=lu

Proof: The result follows immediately from the fact that in the

case of exponential utility, the certainty equivalent in terms of

which Pu is defined, is additive (see Bamberg and Spremann (1981],

Theorem 4).

The certainty equivalent C defined in (12) has the following

property of additivity:

Proposition 4: Let u be an exponential utility function, then

for any constant w E R and any random variable X

C (X+w) = c(X) + w

Consider now the saddle function:

T= cyg(x,b)
K(x,y) go(X) - L log Ee " y

Using the u-penalty, given in (13), we see that the deterministic

primal (CE-P) becomes for exponential utility

(CE-P) inf sup K(x,y) (14)
x y O

Recalling the definition of the Lagrangian Lb(xy) for the original

problem (SP), and using Proposition 4, (14) is easily shown to be:

(CE-P) inf sup u EuLb(x,y) (15)
x y>O

The u-penalty (13)for an exponential utility, and the resulting

min-max representation (15) of (CE-P), were studied recently by

. . . . - .. . . .. " -. . "". . . . . . . ..- "-,-.. -. .'-. -" " ' .



-15-

gives the following nonsmooth optimization problem:

(AP) inf g(X) 1 max(Om(W
0 il a2(x) 

1

5. THE CASE OF EXPONENTIAL UTILITY

In this section we confine attention to the important special

class of constant risk aversion utility functions, i.e., utilities
1

with r(t) = = a > 0. This corresponds exactly (up to a positive
-at

affine transformation) to exponential functions, u(t) = -e

The associated certainty equivalent, for a random X is then:

Xlog Ee -ax (12)

and the corresponding u-penalty function is given by:

T
su Ca(y g(x,b))

The next result shows that for (SP) with independent constraints (see

Section 4, Definition 1), the joint constraints penalty P ux)

defined in (4) is additive, i.e., the sum of the penalties

(Pk(x): k E I} for individual constraints.
u

Theorem 3: Let u be an exponential utility function

u(t) = a - be -t/p (p > 0, b > 0, a EIR)

For independent constraints, Pu is given by:

u P (x)= k p (x)
k=l

where Pk(x) = p sup f-logEe - kk bk and then the corresponding
YuO
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Using the approximation in (CE-P), one obtains an

approximate Problem (AP):

(AP) inf (go(x) + P (x)}
xU

This representation can be further simplifed for uncorrelated cons-

traints and in particular for independent constraints.

Definition 1: We say that (giCx,b) 0 i E I} are uncorrelated

(independent] constraints if the components {bi}iEI are un-

correlated (independent] random variables and if for each i, the

i-th constraint depends only on bi , i.e., k a m and gi(x,b) =gi(x,bi)

Vi E I. In this case the variance covariance matrix is:

ij
Z ij (x) =

I0 i j

where a?(x) is the variance of gi(x,bi).

The second order approximation of the u-penalty reduces to

m 1
P (X) = sup I [ 2 -yiai(x)]u y:0 i=i .yiix o 1

where mi(x) = Eb gi(x,bi). The latter is a maximization of a
1

separable function, which can be carried out analytically, to obtain:

Proposition 3: For (SP) with uncorrelated constraints, a second

order approximation of P (x) is
u

l~' 1 2
P (I -  (max(Om (xA]

u",. 2.

u0 1=1 cr (X) c

Thus, for uncorrelated constraints, an explicit representation of (AP)

.-,'. - -. -.. ~~~~~~~~~..-...:..........--.... ......-.....-......-.......-.......... .. •......-.......'...... ....-..... -..,
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If we define the u-penalty for the k-th constraint in the natural

way as:

- =x) sup u Eu(ykgk (x,b))

we get the following monotonicity property:

Proposition 2: If xI is less feasible than x for the k-th

constraint, then

P k(xl 1 > P k(X 2
U U 0

We derive now quadratic approximation for the u-penalty function

_ (x), for u E U2. First denote:

m(x) Eg(x,b)

E(x) = cov(g(x,b))

It can be shown by direct differentiation of the certainty equivalent

-. - functional

T
-"- v(y) = u-E u (y g(x,b))

that

Vv(O) = m(x)

V2v(O) = -r .r(x) with r := - u( > 0
ioo u' (0) "

Moreover, we know that v(O) = 0, hence a second order Taylor-

expression of v(y) in (4) yields the following approximation of P (x):
u

(x) = sup (y m(x) - k ryTE".- u 2 0 x~}

Note that, since E(x) is positive semi-definite, the approximate

u-penalty P (x) is the optimal value of a concave quadratic program
u

with only nonnegativity constraints.
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Then we have Qk(xO) 0 and using the chain rule, with u being continuous:

,,Q(x,yk)] = Eg(xb) > 0

Hence, there exists Yk > 0 such that:

Qk(xYk) > Qk(XO)= 0

Noting that Pu(X) =0sup mQ(XY) > SUp Qk(x,'k) (10)
0,<yER 0<YkER

and using the previous inequality, it follows that Pu(x) > 0 which

proves the second part of (i).

..... (ii) Let &k(x) > 0 for some k E I. By (10) we have

P u(x) > sup u-1Eu (Ykgk(xb))

Since u is increasing and 0 < gk(x) < gk(xb), the above inequality

implies that

Pu (X) • sup u-iEu (ykgk(x)) = sup ykgk(x)

and hence the result (ii) follows.
"3

The first part of the theorem demonstrates that P u(x) is a

penalty function for violation of the constraints in the mean. The

second pazt shows that Pu has the desirable property of excluding

9solutions which are not feasible in (SP), for any realization of b,

since for those P (x) =
'. U

1. 2We say that x is less feasible than x , for the k-th

constraint, if:

)gk(x > g(x 2

Note that for stochastic right hand side constraints gk(x)- > bk,

01 2
this simply means < gk(x 2 )

"~ ~ ~ ~ ~ ~ ~~g~ < , . . " "-"•k• ,",- .. "•",".",x ' ' ' ' ,

'." ',' .'' . -''-' -'. .'. -'.- ''4" -'--" " - ." ." . . ." ,'. " ..." .',. ." ." '.. .'. " - _- .'' , " . =-,' L ¢ '_ = . '_,..' '_ d. ' * -,,'--
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4. PROPERTIES OF THE u-PENALTY

In this section we derive the basic properties of the u-penalty

P defined in the introduc-tion (see eq. (4)), discuss the appropriate-

-ness of using it for programming problems with stochastic constraints,

and derive an approximate simple expression for its computation.

Theorem 2 For any u E U1, the u-penalty function

P (x) - sup u- Eu (y Tg(x,b))

satisfies:

0 if Eg(x,b) < 0

SC{positive if Eg(x,b) % 0

(ii) Pu(x) = if for some k kx) C b) >0
bEB

Proof: (i) Let Q(x,y) - u-IEu (ygxb)) then

Pu(X) = sup Q(x,y) > Q(x,O) = 0 (9)

yo

Since u E U1, by Jensen inequality (see Proposition 1 (c)):

T
Q(x,y) ( y Eg(x,b)

* with equality for y= 0, and so

T
. (x) = sup Q(x,y) sup y Eg(x,b)

y>,O y>,O

* Now, if Eg(x,b) < 0, the last inequality shows that P (x) < 0
U

which together with (9) proves the first part of (i).

Assume now that for some k E I, Egk(xb) > 0.

-1
Let Qk(xyk):= Q(xO,...yk,...,O) = u Eu (ykgk(xb))

. .
°

.
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T T / TOE u(y Z) - Eu X Z) < E ((Y-x) Z V~ n adZ
E u (xTZ) ,(u(xTZ))

The latter is equivalent to Jensen inequality for h(t,t 2 ) with

- T T n
tI  u(y Z) and t 2  u(x Z), x,y E R , which holds for all Z if

and only if h is convex. Thus, invoking lemma 1, the proof is

completed.

Remark 1 - The two parameters class of utility function with

hyperbolic absolute risk aversion (HARA) defined by r(t) a

which is widley used in economics (see e.g., Hammond [1974], Wilson
(1968]) satisfies triviaily the condition that is concave.

r(t)

The(HARA)family consists of the following utilities (defined

for t > - b
a

- e - t/b if a= 0, b 0

u(t) = log(b+t) if a = 1

!*(t+b)(a-l)/a if a $ 0, a € 1

Th.e first one, corresponding to constant risk aversion r(t) =

and called accordingly (CRA)-utility function, is of particular

interest and will be studied in Section 5.

""-'

S-/.

6
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where n(y) is the unique solution of the equation:

T rEu' (y Z-ni(y)) I , Vy E ]R (24)

Moreover

(i) n(y) (and hence w(y)) is continuously differentiable;

(ii) n(0) = w(O) = 0; rn(0) = Vw(0) = E(Z).

Proof: Let us define the function : I x -o- I by:

, Eu' ( T -)

Since u E UN, '(y, ) is continuously differentiable on IR

Now equation (24) i.e. *(y,n) = I has a solution n - n(y) for arbitra-v

y. This follows since '(y,n) is continuous in n, (y,n) < I for n suf-

ficiently small and P(y,n) > 1 for n sufficiently large. Moreover since

( T-- P(y,n) = -Eu''(y Z-n) 0, by the implicit function theorem there exists

a unique differentiable solution n Tn(y) to the equation 'i,(y,n) = 1. By the

definition of w(y), in (22), as an unconstrained concave optimization

problem, w(y) is obtained by equating the derivative of the supremum

to zero, thus (23) is proved.

Now (24) holds for any yE M, thus '(O,n(0)) = u'(-n(0)) - 1,

then, u' being strictly decreasing with u'(0) = 1, we get n(O) =0

de
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A

and hence from (23) w(O) 0. Differentiating (24) with respect

to y, gives for any y ERm:

E((Z - Vn(y))u"(yT Z - n(y))) = 0

Then, for y = 0, using the facts n(0) = 0 and u"(O) < 0, we

have Vn(0) = E(Z). Finally, differentiating (23) with respect to

y we have using (24):

Vw(y) = E(Zu'(yTz- n(y)) (25)

and thus Vw(O) = E(Z).

0

7. A PENALTY FUNCTION INDUCED BY THE NEW CERTAINTY EQUIVALENT

In analogy to the way the u-penalty was constructed in terms

of the classical certainty equivalent (see eq. (4)), the new

certainty equivalent induces the following penalty function:

I1x =~T Eu&g(x,b) n)
• (x) sup s(y g(x,b))=sup sup (n + Eu(- )}u y>O y>,O nE R

This function possesses the same properties as Pu' indeed from

Theorem 4 (a), we see immediately that if b is deterministic then:

0. g(x,b) < 0

,(x = {io otherwise

thus it is an ideal penalty for the original deterministic program

(P): inf{g 0(x): g(x,b) < 0} In the stochastic case it can be

shown in analogy with Theorem 2 that

i -. - " . ." - . . • i . - ," " .'"' - '- . '." -'. .- , -" .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .
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Theorem 5 - The function Tu  satisfies

0 if Eg(x,b) < 0

nu(x) = positive and finite, if Eg(x,b) 0

if for some k; k(x) >0

p- Proof: The proof follows step by step the proof of Theorem 2 since

the latter uses properties of C(x) which are shared by S(x),

see Theorem 4.

0

Theorem 5 shows that T is a penalty function for violationI \. U

of constraints in the mean, and it automatically excludes solutions

to the stochastic program (SP) which are not feasible for all

realizations of b. Therefore a suitable deterministic surrogate

problem for (SP) is:

,.-.(NCE-P) inf_[g^(x) + Nu(X)}

From the additivity of the new certainty equivalent (Theorem 4 (d)):

T
inf {go (x) + Tu (x)) inf sup S(go(x) + y g(x,b))
x x y O

hence (NCE-P) can be written as a minimax problem

(NCE-P) inf sup S(Lb(x,y))
x y>,O

where Lb is the Lagrangian of problem (SP).
S

lie now derive an upper bound for the penalty 11u  in terms of the

probability of satisfying the constraints: Pr(g(x,b) 0).

Theorem 6 - Let u E ULA For every x such that

- p(x) - Prfg(x,b) <0} > 0 , one has:

6' .
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nu(x) < (p(x)) (27)

where (p) is given in Lemma 2.

Proof: Fix x such that p(x) > 0. Recall that:

SCu(X) = sup S(y Tg(x,b))

T
Applying Lemma 2 with X y g(x,b) for some non zero y >O, and L = 0,

we get

S(Ts(y g(x,b)) * (Py) (28)
y

T
where here P = P (x) = Pr(y g(x,b) < 0). Hence from (28)

y y

T7u(x) sup (P y) (29)
y>,O

Moreover, since ' is decreasing (see Lemma 2):

T
sup t(Py ) - (inf Pr(y g(x,b) < 0)). (30)
y>,O y>,O

T
But for all 0 $ y 0 0: Pr(y g(x,b) < 0) Pr(g(x,b) < 0), and hence,

using again the fact that ' is decreasing,

T(inf Pr(y g(x,b) < 0))< (Pr(g(x,b) < 0)

y>O

which combined with (29) and (30) proves the inequality (27).

Remark 2: Using the properties of the function ¢(.) from Lemma 2,

it is interesting to note that the larger is the probability of

satisfying the constraints, the smaller is the "upper-bound penalty"

We derive now, quadratic approximation for the penalty function

T (x). We use the same notations as given in Section 4. Let us
u

denote by w x(y) the NCE-functional corresponding to the random

vector Z = g(x,b). From the Proposition 6, for u U the NCE
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*';-i" functional is given by:

T
wx(y) n. (y) + Eu (y g(x,b) - nx(y)) (23)

with n (y) uniquely determined by E u' (yTg(x,b) - x(y)) = 1.x x

A direct differentiation of (23) with respect to y gives:

Vw (0) = mx)

V2Wx(O) = u"()(x) = - ro(x)

(since here u'(0) = 1, ro = u'(O) = -U
0 "u(0))

Moreover, we know that w x(0) = 0, hence a second order Taylor

expansion of w (y) is:
x

0 T 1 Tw X(y) ) -Y M ro y EZxy
@x

and therefore an approximation of Tu (x) is given as the optimal

value of the concave quadratic program:

T 1 T
ru(x) - sup {ym(x) -2-r Y (x)y.

y 0

For a quadratic utility, the approximation-is exact; this can be

verified by a direct calculation. The approximation 17 (x),
U

coincides with the approximate Pu (x) of the u-penalty given in

Section 4. In particular, similar results concerning uncorrelated

constraints (see Proposition 3) can be recovered here, i.e.:

"x) = 2 r (max(0,m.(x))]2

* o i=l a.(x)

m°-. 
.o.,,
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8. DUALITY RESULTS FOR STOCHASTIC RHS PROGRAMS

In this section we treat the special case of the general

stochastic programming problem (SP):

(SP-RHS) infig 0 (x): gi(x) >bi, i E I =1...,M}

which is simply obtained from (SP) with g(x,b) = b-g(x).

For each i E I, b. will denote the infinum support of b..-i 1

Using the new certainty equivalent S, the penalty function H

is given here by:

nu (x) sup s(yT (b-g(x)))

T
However, by the additivity of S, since y g(x) is not random,

we obtain the following representation for Tu

11 x) = sup {w(y) - yT g(x)}

u y>0

where as in Section 6

T Tw(y) = S(y b) sup (rT + Eu (yb-ri)}
nER

The corresponding deterministic primal (NCE-P): inf (g (x)+Nu(X)1
0 U

is then:

T
(NCE-P) inf {g (x) + sup {w(y) - y g(x)}}

0x y>'O

Assume from now on that go(x) is convex, and that {gi(x)}i€ I

are concave functions, so (SP-RHS) is a convex program. This

implies that rl (x) is convex and so (NCE-P) is a convex program.Au

In terms of the saddle function:

K(x,y) = go(x) + w(y) - y g(x) (31)
%0
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it can be written as:

(NCE-P) inf sup K(xy)
x y 1O

We define the Dual problem corresponding to (NCE-P) by

(NCE-D) sup inf K(x,y)

The main result concerning the dual pair (NCE-P) and (NCE-D) is

the validity of a strong duality result:

inf (NCE-P) = max (NCE-D)

This will be proved in Theorem 8. Before we need an additional

limit property of the (one dimensional) NCE function w(y), which

is interesting by itself. A similar property for the classical

certainty equivalent functional v(y), but only for the exponential

utility is given in Bamberg and Spremann [1981].

Theorem 7 - Let X be a random variable, with x . >

denoting the infimum of the support of X, and let u E LL" Then

lim w(y) x (32)

- Proof: We have to prove that

lim W(Y) x (33)
y min

i0'lira wy < x mi C VC > 0 (34)

For any y > 0, yX-n > y Xi n - n and since u is increasing,

" from the definition of w(y) we get:

w(y) sup (n + u(y x -n)} - S(y xm.n )
n ER

4'* .........- ~ *.x.. ;-....-'.x+.:! -5. I .*, i I.II I I
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By Theorem 4 (a), S(y Xmin) - Xmin ' thus the last inequality

proves (33).

Let e > 0 be fixed, but arbitrary. Applying Lemma 2 to the

random variable yX with L = y(xmin+ C), we have

w(y) = S(yX) 4 Y(xmin + C) +

where p Pr(X < xmin +c) > 0. From the latter inequality, (34)

follows immediately.

The duality theorem now follows.

Theorem 8 - Let (SP-RHS) be a convex stochastic program and consider

the corresponding deterministic program (NCE-P) for u E UA.

If the following condition holds

(S) 3x E ]Rn such that gi(x) > b. V i E I

then

inf (NCE-P) = max (NCE-D) (35)

Proof: Since go(x) is convex and {gi(x)} are concave, then
S iEI

K(',y) given in (31) is convex for every y > 0. From Proposition 5

, we know that w(y) is concave, hence K(x,.) is concave. By

a result of Rockafeller [1964] a sufficient condition for the

validity of (35), for a general convex-concave saddle function K(x,y) is:

T
o 0 such that y K(x,y) >0 (x ERn, y > 0)

Here by Proposition 6, (see eq. (25)):

gt

*0 7 K (x, y) x Vw (y) -g~x W E(bu' (y b - n (y)) g g(x)

S.

''e ' "e ',, .€ .- . ,e .e .e . ,. . - - : , " " - '- -' .' .' -' "- " - '" 
"

" . ' . " - " -. . '" " " " " " " "
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thus, we have to show

)y 0 0 such that YTO{E(bu'(y b- ny))) g(x) 0

'x E Rm, y > 0

This is certainly satisfied if:

3i, 3) > 0 such that vw(y)= E(bu'( yTb- n(y))) < g(x) (36)

To show that condition (S) implies (36) it suffices to prove that:

inf - w(y) < b i E I (37)y>O ayi -

For all i E I, let wi(Yi) = w(0,0,...,yi,...O) i.e.,

wi(y i) = sup {n + Eu (biyi - n)}
n EIR

Now,

inf w(y) < inf - -L wi(yi) V i E I

yER' Yi 0.Yi€EJ Yi

So, in order to prove (37) it suffices to prove that

inf w!(y i) < b.i (38)
0$yj ER 11 -

But w! is a derivative of a strictly concave function and thus1

is strictly decreasing, hence inf w!(yi) = lim w!(yi).
Y 1 "*WYi>-0  yi

Moreover, wi(yi) is concave, thus by the gradient inequality

0 =w(0) w(y) - yiw!(Yi)

ii and then by Theorem 7
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< wi(Y i )

lim Wj(Yi) - li2 = b.
yi yi-*+0 Yi -

which is exactly (38), and the proof is completed.

0

Remark 3 - The regularity condition (S) needed to establish the

strong duality result for the pair of problems (NCE-P) (NCE-D) is

extremely mild; for continuous random variables, if (S) does not

hold, then the feasible set Ix: g(x) > b} is empty in probability 1.

0

Our last result gives a concrete interpretation of the dual

problem (NCE-D). Recall that in the deterministic case the Lagrangian

dual of (P) is the concave program: sup [inf Lb(x,y)]. We show here,
y>O x

in the stochastic case, that the dual program (NCE-D) consists of

maximizing the new certainty equivalent of the Lagrangian dual

function.

Theorem 9 - Let (SP-RHS) be a convex stochastih program, and

u E UN  Then the induced deterministic dual (NCE-D) is the concave

program:

(NCE-D) sup S(inf Lb(x,y)) (39)
y'O x

Proof: The dual problem (NCE-D) is given by

(NCE-D) sup inf K(x,y)
y O x

where K(x,y) is defined in (31). Since g0 (x) -y Tg(x) is not

random, by the additivity property of S(.), (Theorem 4 (d)) K(x,y)

can be rewritten as
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K(x,y) =S(L b(x'y)) (40)

where L,0(xly) =g~x OW y T(b- g(x)) is the Lagrangian for (SP-RHiS).

Thus, in order to prove (3 we need to prove that

inf S(L b(x,b)) = S(inf Lb(x,y))
x x

Indeed, we have:

S(inf L b(x,y)) =S(y Tb+ inf(g (W) y'g(x)))
x x

= S~y Tb) .inf(g O(x) -y g(x)) [by Theorem 4 (d))
x

= inf{S(y b) +. g(x -W yg(x)}
x

= inf S(y Tb + g0 (x) -y Tg(x)) (by Theorem 4 (d)]
x

= inf S(Lb~~)
x

Man,



-35-

REFERENCES

1. Arrow, K.J., Essays on the Theory of Risk-Bearing, Markham

Publishing, Chicago, 1971.

2. Bamberg, G. and Spremann, K., "Implications of Constant Risk

Aversion", Zeit. fur Operations Research, Vol. 25 (1981),

pp. 205-224.

3. Ben-Tal, A., "The Entropic Penalty, Approach to Stochastic

Programming", to appear in Math. of Oper. Res.

4. Ben-Tal, A. and Teboulle, M., "The Duality Between Expected Utility

and Penalty in Stochastic Linear Programming", Proceedings of the

IFIP Conf. on "Stochastic Programming", F. Archetti (ed.), Lecture

Note in Control and Information Sciences, Springer Verlag, NY., 1984,
to appear.

5. Bourhaki, N., Elements de Mathematique, Fonctions d'une Variable

Reelle, Vol. IX, Livre IV, Hermann, Paris, 1958.

6. Dantzig, G.B., "Linear Programming under Uncertainty",
Management Sc., Vol. 1 (1955), pp. 197-206.

7. Dantzig, G.B., and Madansky, A., "On the Solution of Two-Stage
Linear Programs under Uncertainty", in Proc. Fourth Berkeley

Sympos. on Mathematical Statistics and Probability, Neyman, I.J.

(ed.), 1961, pp. 165-176.

8. Dempster, M.A.1I., (ed.) Stochastic Progranming, Academic Press,
New-York, 1980.

9. Fiacco, A.V., and McCormick, G.P., Nonlinear Programming:
Sequential Unconstrained Minimization Techniques, John Wiley,
New-York, 1968.

to. llammond, J.S., "Simplifying the Choice between Uncertain
Prospects where Preference is Non-Linear", Management Sci.,

Vol. 20 (1974), pp. 1047-1072.

II. Kall, P., "Stochastic Programming", Invited Review, European
Journal of Oper. Res., Vol. 10 (1982), pp. 125-123.

1 V Luenberger, D.G., Introduction to Linear and Nonlinear Program-

ming, Addison-Wiesley, Reading, Mass., 1973.

13. Mangasarian, O.L. and Rosen, J.B., "Inequalities for Stochastic
Nonlinear Programming Problems", Operations Res., Vol. 12 (19bl),
pp. 143-154.

1!,. Mood, A.M., Graybill, F.A., and Boes, D.C., Introduction to t, .e
Theory of Statistics, McGraw Hill Series in Probability and

Statistics, 1974.



-36-

REFERENCES, con't.

15. Pratt, J.W., "Risk Aversion in the Small and in the Large,"
Econometrica, Vol. 32, (1964), pp. 122-136.

16. Rockafellar, R.T., "Minimax Theorems and Conjugate Saddle Functions,"
Math. Scand., Vol. 14, (1964), pp. 151-173.

17. Rockafellar, R.T., Convex Analysis, Princeton University Press,
Princeton, N.J., 1970.

18. Rockafellar, R.T., Conjugate Duality and Optimization, Regional
Conference Series in Applied Mathematics, No. 16, SIAM, 1974.

19. von Neuman, J. and Morgenstern, 0., Theory of Games and Economic
Behavior, 2nd ed., Princeton University Press, Princeton, N.J., 1967.

20. Walkup, D. and Wets, R., "Stochastic Programs with Recourse,"
SIAM J. Appl. Math., Vol. 15, (1967), pp. 1299-1314.

21. Wets, R., "Stochastic Programming: Solution Techniques and
Approximation Schemes", Mathematical Programming The State of the
Art, A. Bachem, M. Grotschel, B. Korte (eds.), Springer-Verlag,
Berlin, 1983.

22. Wilson, R., "The Theory of Syndicates", Econometrica, Vol. 36,
(1968), pp. 119-132.



S,. . . : , ." _ -.. -. - -.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFORE COMPLETING FORM
I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

CCS 506 _f .. / ,, -- 7

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Expected Utility, Penalty Functions
and Duality in Stochastic

Nonlinear Programming 6. PERFORMING ORG. REPORT NUMBER

7. AUTVR(genTal S. CONTRACT OR GRANT NUMBER(@)

M. Teboulle N00014-82-K-0295

9. PERFORMING ORGANIZATION NAME AND ADORESS 10. PROGRAM ELEMENT. PROJECT, TASK

Center for Cybernetic Studies AREA & WORK UNIT NUMBERS

The University of Texas at Austin
Austin, Texas 78712

I 1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research (Code 434) February 1985
I3. NUMBER OF PAGES

38
14. MONITORING AGENCY NAME & ADDRESS(It dillferent from Controlllng Olle) 15. SECURITY CLASS. (ol thle report)

Unclassif ied
iSa. OECLASSIFICATJON/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

DISTRIBUTION STATEMENT A

1 Approved km public relecisel
Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, it different from Report)

II. SUPPLEMENTARY NOTES

1t. KEY WORDS (Continue on rawr., aide If necoeer, id identlty by' block rninbor)

Stochastic Programming, Duality in Nonlinear Programming, Minmax Theorems
Convex Functions, Expected Utility, Risk Aversion, Certainty Equivalent,

Penalty Functions

20. ABSTRACT (Coitinu on rewero aide if noceeom, nid Idmtit v by block number)

We consider nonlinear programming problems with stochastic constraints.
The Lagrangian corresponding to such problems has a stochastic part, which

in this work is replaced by its certainty equivalent (in the sense of

expected utility theory). It is shown that the deterministic surrogate

problem thus obtained, contains a penalty function which penalized

violation of the constraints in the mean. The dual problem is studied

(for problems with stochastic righthand sides in the constraints) and a

OD *"" 1473 EDITION OF I NOV48 IS OBSOLETE

S/N 0102-014-6601 1
SECURITY CLASSIFICATION Of THIS PAGE (11e, Data Eneteed)



Unclassified
* L..f-UITY CLASSIFICATION OF THIS PA0G(mei Deta Ent.emd)

Abstract continued.

comprehensive duality theory is developed by introducing a new certainty

equivalent concept, which possesses, for arbitrary utility functions, some

of the properties that the classical certainty equivalent retains only

for the exponential utility.

o

Unclassified

0 SRCURITY CLASSIFICATION OF TWI$ PAaG(U fo DAN heamt.

• " - '-"- " . ..'--- - "-. - .' - -" ." . -. .." " ." " .' .'": " " ,'" """ -""."". '-.''.-'.-. " ." '- " -. --' ," .L.:.- ..- .,



FILMED

6-85

DTIC
S.,


